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1 Introduction

Our current understanding of quantum mechanics is based on certain basic physical
effects that, it is believed, cannot be explained within the framework of classical
ideas and, therefore, require quantization.

The photoelectric effect has a special place in quantum theory because it became
the first physical effect, for explanation of which the quantization of light was
introduced.

By the early twentieth century, the three basic laws of the photoelectric effect
were experimentally established: (1) the photoelectric current is proportional to the
intensity of incident light; (2) the maximum kinetic energy of the emitted photo-
electrons varies linearly with the frequency of incident electromagnetic radiation
and does not depend on the flux; and (3) for each substance, there is a threshold
frequency (the so-called red edge of the photoelectric effect), below which the
photoelectric current is not observed.

The second and third laws of the photoelectric effect would appear to contradict
classical electrodynamics, which requires dependence of the kinetic energy of the
emitted photoelectrons on the intensity of the incident light. Such a conclusion
necessarily follows from the analysis of the motion of charged particles—electrons
in the field of a classical electromagnetic wave. Thus, the attempts to explain
the photoelectric effect within the framework of classical mechanics and classical
electrodynamics were unsuccessful.
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This contradiction was overcome due to the quantization of radiation, which
postulates that the absorption of light occurs in the form of discrete quanta �ω

(Einstein 1905). At present, in connection with this finding, it is considered to be
generally accepted that the photoelectric effect provides “evidence” for the quantum
nature of light.

However, in the early years of quantum mechanics, it was shown that the pho-
toelectric effect is fully described within the framework of so-called semiclassical
theory, in which light is considered to be a classical electromagnetic wave, while the
atom is quantized and described by the wave equation, e.g. the Schrödinger equation
or the Dirac equation [1–4].

In this case, the wave equation is solved as a typical classical field equation,
whereby a continuous wave field is calculated. A “quantization” of this wave field
occurs only at the stage of interpreting the solution, from which the “probability of
photoelectron emission” from an atom is determined.

There were also attempts to build the semiclassical theories of other quantum
phenomena, namely, Lamb shift [5, 6], spontaneous emission [5–7], semiclassical
radiation theory [8], radiative effects [9], Compton effect [10–15], Hanbury Brown
and Twiss effect [16, 17], semiclassical theory of laser [18, 19], etc. Because
the electron in such theories is considered to be a quantum particle and light is
considered to be a classical electromagnetic field, such theories are considered to be
“semiclassical”.

Despite the success of this approach, there are many intra-atomic and optical
phenomena that did not find an explanation within the framework of semiclassical
theory. Because of this, it is generally accepted that a complete description of
the intra-atomic phenomena and light-atom interaction is possible only within the
framework of quantum electrodynamics (QED), when both the states of an atom
and the radiation itself are quantized.

However, as shown in [20–26], there is no need to introduce the quantization of
electromagnetic and electron fields because this interpretation is external to the wave
equation, and it does not follow from these equations. Moreover, this approach is
superfluous in explaining the many physical phenomena that before were interpreted
as a result of the quantization of matter.

In previous papers of this series [22–26], an attempt was made to construct a
completely classical theory, which is similar to classical field theory [27], in which
any quanta are absent. Here, as in [20–26], classical theory is understood as a theory
in which all objects are either particles or fields, and no object can simultaneously
possess both wave and corpuscular properties. In other words, in classical theory,
there is no such concept as corpuscular-wave dualism. Thus, in papers [20–22], it
was shown that the discrete events (e.g. clicks of a detector, emergence of the spots
on a photographic plate) that are observed in some of the “quantum” experiments
with light (especially in the double-slit experiments), which are considered to be
direct evidence of the existence of photons, can in fact be explained within classical
electrodynamics without quantization of the radiation. Similarly, if the electrons
are considered to not be a particle but instead a classical continuous wave field,
similar to the classical electromagnetic field, one can consistently explain the “wave-
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particle duality of electrons” in the double-slit experiments [23]. In this case, the
Dirac equation and its specific cases (Klein-Gordon, Pauli and Schrödinger) should
be considered to be the usual field equations of a classical electron wave field,
similar to Maxwell’s equations for classical electromagnetic fields. As was shown
in [23], considering the electron wave as a classical field, we must assign to it,
besides the energy and momentum which are distributed in space, also an electric
charge, an internal angular momentum and an internal magnetic moment, which are
also continuously distributed in space. In this case, the internal angular momentum
and internal magnetic moment of the electron wave are its intrinsic properties and
cannot be reduced to any movement of charged particles. This viewpoint allows for
a description in natural way, in the framework of classical field theory with respect
to the many observed phenomena that involve “electrons”, and it explains their
properties which are considered to be paradoxical from the standpoint of classical
mechanics. Thus, the Compton effect, which is considered to be “direct evidence of
the existence of photons”, has a natural explanation if both light and electron waves
are considered to be classical continuous fields [23]. The same approach can be
applied to the Born rule for light and “electrons” and to the Heisenberg’s uncertainty
principle, which have a simple and clear explanation within classical field theory
[20–23]. Using such a point of view on the nature of the “electron”, a new model of
the hydrogen atom that differs from the conventional planetary model was proposed
and justified in [24]. According to this model, the atom represents a classical open
volume resonator in which an electrically charged continuous electron wave is held
in a restricted region of space by the electrostatic field of the nucleus. As shown
in [24], the electrostatic field of the nucleus plays for the electron wave, the role
of a “dielectric medium”, and thus, one can say that the electron wave is held
in the hydrogen atom due to the total internal reflection on the inhomogeneities
of this “medium”. In the hydrogen atom, as in any volume resonator, there are
eigenmodes that correspond to a discrete spectrum of eigenfrequencies, which are
the eigenvalues of the field equation (e.g. Schrödinger, Dirac). As usual, the standing
waves (in this case, the standing electron waves) correspond to the eigenmodes.
If only one of the eigenmodes is excited in the atom as in the volume resonator,
then such a state of the atom is called a pure state. If simultaneously several (two
or more) eigenmodes are excited in the atom, then such a state is called a mixed
state [24].

Using this viewpoint, it was shown in [24] that all of the basic optical properties
of the hydrogen atom have a simple and clear explanation in the framework of
classical electrodynamics without any quantization. In particular, it was shown
that the atom can be in a pure state indefinitely. This arrangement means that
the atom has a discrete set of stationary states, which correspond to all possible
pure states, but only the pure state that corresponds to the lowest eigenfrequency
is stable. Precisely this state is the ground state of the atom. The remaining pure
states are unstable, although they are the stationary states. Any mixed state of an
atom in which several eigenmodes are excited simultaneously is nonstationary, and
according to classical electrodynamics, the atom that is in that state continuously
emits electromagnetic waves of the discrete spectrum, which is interpreted as a
spontaneous emission.
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In reference [24], a fully classical description of spontaneous emission was given,
and all of its basic properties that are traditionally described within the framework of
quantum electrodynamics were obtained. It is shown that the “jump-like quantum
transitions between the discrete energy levels of the atom” do not exist, and the
spontaneous emission of an atom occurs not in the form of discrete quanta but
continuously.

As is well known, the linear wave equation, e.g. the Schrödinger equation,
cannot explain the spontaneous emission and the changes that occur in the atom
in the process of spontaneous emission (so-called quantum transitions). To explain
spontaneous transitions, quantum mechanics, it is believed, must be extended to
quantum electrodynamics, which introduces such an object as a QED vacuum, the
fluctuations of which are considered to be the cause of the “quantum transitions”.

In reference [24], it was shown that the Schrödinger equation, which describes
the electron wave as a classical field, is sufficient for a description of the spontaneous
emission of a hydrogen atom. However, it should be complemented by a term that
accounts for the inverse action of self-electromagnetic radiation on the electron
wave. In the framework of classical electrodynamics, it was shown that the electron
wave as a classical field is described in the hydrogen atom by a nonlinear Eq. [24]

i�
∂ψ

∂t
= − �

2

2me

�ψ − e2

r
ψ − 2e2

3c3
ψr

∂3

∂t3

∫
r|ψ |2dr (1)

where the last term on the right-hand side describes the inverse action of the
self-electromagnetic radiation on the electron wave and is responsible for the degen-
eration of any mixed state of the hydrogen atom. Precisely, this term “provides”
a degeneration of the mixed state of the hydrogen atom to a pure state, which
corresponds to the lower excited eigenmodes of an atom. As shown in [24], this
term has a fully classical meaning and fits into the concept developed in [20–
26] in that the photons and electrons as particles do not exist, and there are only
electromagnetic and electron waves, which are classical (continuous) fields.

The nonlinearity of the Eq. (1) plays an essential role in light-atom interaction
and should be taken into account in all calculations. Thus, as shown in [25, 26],
based on the nonlinear Eq. (1), the light-atom interaction can be fully described
within the framework of classical field theory without the use of quantum electro-
dynamics. In particular, in reference [25], the optical Bloch equations with damping
due to spontaneous emission and with correct damping rate has been directly derived
from the nonlinear Schrödinger equation (1) without quantization of radiation [25].

In reference [26] it was shown that the thermal radiation can also be described
without quantization of energy in the framework of classical field theory using
the nonlinear Schrödinger equation (1) which is considered as a classical field
equation. As shown in [26] the Planck’s law for the spectral energy density of
thermal radiation and the Einstein A-coefficient for spontaneous emission are
derived without using the concept of the energy quanta.

As will be shown below, the failures of classical electrodynamics in explaining
the photoelectric effect are connected with the incorrect postulate that electrons
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are particles. I will show that for a consistent explanation of the photoelectric
effect within the framework of classical field theory, it is sufficient to abandon this
postulate and consider continuous classical electron waves instead of the particles-
electrons [23, 24]. The considered theory is fully classical because it does not
contain not only the quantization of the radiation but also the quantization of the
electron wave.

2 Photoelectric Effect

In reference [25], it was assumed that under the influence of an incident elec-
tromagnetic wave, the electron wave in an atom is only redistributed between its
eigenmodes but not emitted outward by the atom. In this case, internal electric
currents arise inside the atom that, however, cannot be detected by macroscopic
devices. Such a situation occurs at a relatively low frequency of the incident
electromagnetic wave. If this frequency is sufficiently large, then an emission of
the electron wave by the atom occurs. Because the electron wave has an electric
charge that is continuously distributed in space [23, 24], in this case, an external
electric current (photoelectric current) appears that can be detected by macroscopic
devices. As a result, the photoelectric effect will be observed.

From the considered point of view [20–26], the photoelectric effect represents
an emission of the continuous charged electron wave by an atom that was excited
by the incident classical electromagnetic wave. Formally, the photoelectric effect
is no different from the stimulated emission of electromagnetic waves by an atom
[24], with the only difference being that the electron wave emitted by an atom is
electrically charged, while the electromagnetic wave does not carry the electric
charge. Assuming that the electric charge is continuously distributed in the electron
wave [23, 24], one concludes that in the process of the emission of the electron
wave, the atom is positively charged continuously. However, accounting for the fact
that the electron wave for an as yet inexplicable reason does not “feel” its own
electrostatic field [24], this process will not affect the emission of the following
“portions” of the continuous electron wave because they must overcome the same
electrostatic potential of the nucleus.

Let us consider the photoelectric effect for the hydrogen atom being in the classic
monochromatic electromagnetic wave.

In this section, we neglect the inverse action on the electron wave of its
own nonstationary electromagnetic field. For this reason, the last term in the
Schrödinger equation (1), which is associated with a spontaneous emission of the
electromagnetic waves, will not be considered, and we will use the conventional
linear Schrödinger equation

i�
∂ψ

∂t
= − �

2

2me

�ψ − e2

r
ψ + ψerE0 cos ω0t (2)
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where ω0 is the frequency of the incident light. We will consider here the approxi-
mation, when the wavelength of the incident electromagnetic wave is substantially
larger than the characteristic spatial size of the electron field in the hydrogen atom,
which is of the order of the Bohr radius aB.

The wave function of an electron wave can be represented as in [28]

ψ =
∑

k

ck(t)uk (r) exp (−iωkt) +
∑
n

∞∫

0

Cn (ω, t) fn (r, ω) exp (−iωt) dω (3)

where the first sum describes that part of the electron wave that is contained in
the eigenmodes of the atom (i.e. corresponding to a “finite motion” of the electron
wave), and for this term, all ωk < 0, while the integrals describe the electron waves
that are emitted by an atom (i.e. which corresponds to the “infinite motion” of the
electron wave), to which it is known that ω > 0 corresponds. The indices n and k
run through the appropriate integer values. The functions uk(r) and fn(r, ω) are the
eigenfunctions of the stationary Schrödinger equation, while the frequencies ωk are
the eigenvalues that correspond to the eigenfunctions uk(r).

The eigenfunctions uk(r) and fn(r, ω) satisfy the orthogonality conditions:

∫
uk (r) u∗

n (r) dV = δnk (4)

∫
fk

(
r, ω′) f ∗

n

(
r, ω′′) dV = δnkδ

(
ω′ − ω′′) (5)

∫
uk (r) f ∗

n

(
r, ω′′) dV = 0 (6)

Substituting expression (3) into Eq. (2) and using the orthogonality conditions
(4)–(6), we obtain

i�ċk(t) exp (−iωkt) = eE0 cos ω0t
∑
n

cn(t)

∫
run (r) u∗

kdV exp (−iωnt)

+ eE0 cos ω0t
∑
n
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0

Cn (ω, t)

∫
ru∗

kfn (r, ω) dV exp (−iωt) dω (7)

and

i�Ċn (ω, t) exp (−iωt) =eE0 cos ω0t
∑

k
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k
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0

Ck

(
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) ∫
rfk

(
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n (r, ω) dV exp
(−iω′t

)
dω′ (8)
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Within the framework of perturbation theory and assuming that all of the modes
of the electron wave (both discrete and continuous), except for the ground mode u1,
are weakly excited, we obtain

i�ċ1(t) exp (−iω1t) = −c1(t) (E0d11) cos ω0t exp (−iω1t)

+ eE0 cos ω0t
∑
n

∞∫

0

Cn (ω, t)

∫
ru∗

1fn (r, ω) dV exp (−iωt) dω (9)

i�Ċn (ω, t) = eE0 cos ω0tc1(t) exp [−i (ω1 − ω) t]
∫

rf ∗
n (r, ω) u1 (r) dV +eE0

cos ω0t exp (iωt)
∑

k
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0

Ck

(
ω′, t

) ∫
rfk

(
r, ω′) f ∗

n (r, ω) dV exp
(−iω′t

)
dω′

(10)

where

dnk = −e

∫
run (r) u∗

kdV (11)

For a weak electromagnetic wave, which causes weak excitation of an atom,
c1 ≈ 1. For this reason, we can discard terms in Eq. (10) that contain E0Ck(ω

′
, t), as

small of the second order. In Eq. (9), these terms cannot be discarded because the
change in c1 will have a second order in E0. Then, we obtain

i�ċ1(t)=− (E0d11) cos ω0t+1

2
eE0

∑
n

∞∫

0

Cn (ω, t) U1n (ω) exp [−i (ω−ω1−ω0) t]

dω + 1

2
eE0

∑
n

∞∫

0

Cn (ω, t) U1n (ω) exp [−i (ω − ω1 + ω0) t] dω (12)

i�Ċn (ω, t) = 1

2
eE0 · U∗

1n (ω) exp [−i (ω1 − ω − ω0) t]

+ 1

2
eE0 · U∗

1n (ω) exp [−i (ω1 − ω + ω0) t] (13)

where

U1n (ω) =
∫

ru∗
1 (r) fn (r, ω) dV (14)
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Neglecting the purely oscillatory term −(E0d11) cos ω0t in Eq. (12) (which can
be accomplished, for example, by averaging Eq. (12) over rapid oscillations with a
frequency ω0), we obtain

i�ċ1(t) = 1

2
eE0

∑
n

∞∫

0

Cn (ω, t) U1n (ω) exp [−i (ω − ω1 − ω0) t] dω

+ 1

2
eE0

∑
n

∞∫

0

Cn (ω, t) U1n (ω) exp [−i (ω − ω1 + ω0) t] dω (15)

Integrating Eq. (13) with respect to the time from zero to t, we obtain

Cn (ω, t) = e

2�

exp [−i (ω1 − ω − ω0) t] − 1

(ω1 − ω − ω0)
E0 · U∗

1n (ω)

+ e

2�

exp [−i (ω1 − ω + ω0) t] − 1

(ω1 − ω + ω0)
E0 · U∗

1n (ω) (16)

Because the frequencies have ω0 > 0, ω > 0 and ω1 < 0, the value ω1 − ω − ω0
is not equal to zero for any ω, and thus, the first term will always be limited
and will describe the oscillations that are of small amplitude. At the same time,
ω1 − ω + ω0 = 0 at the resonance frequency of ω0 = |ω1| + ω, and near the
resonant frequency, the second term in (16) will increase indefinitely. Therefore,
the second term in (16) makes the main contribution to the effect that is under
consideration. Neglecting the first term in expression (16), we obtain

Cn (ω, t) = e

2�

exp [−i (ω1 − ω + ω0) t] − 1

(ω1 − ω + ω0)
E0 · U∗

1n (ω) (17)

Let us calculate the photoelectric current that arises upon excitation of the atom
by the incident electromagnetic wave.

This goal can be accomplished by calculating the electric current density
according to the formula

j = i
ec2

2ωe

(
ψ∗∇ψ − ψ∇ψ∗) − e2c

�ωe

Aψψ∗ (18)

and integrating it over the surface of an infinite sphere whose centre is in the nucleus
of the atom. However, it is more convenient to accomplish this step while using the
law of conservation of charge and accounting for the fact that qk = − e|ck|2 is the
electric charge that is contained in mode k of the electron wave [24]. Then, q̇k is the
internal electric current in the atom, by which mode k is exchanged with all of the
other modes of the electron wave (including continuous modes, if they exist), i.e.
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the amount of electric charge of the electron wave, which goes into mode k from
other modes or goes out of mode k into other modes, per unit time. Because in this
case, it is considered that only one (ground) eigenmode u1 of the hydrogen atom is
excited, then the photoelectric current

Iph = −q̇1 (19)

or

Iph = −e
d|c1|2

dt
(20)

Using Eq. (15), we obtain the same approximation

Iph = − e2

2i�

∑
n

∞∫

0

Cn (ω, t) E0 · U1n (ω) exp [−i (ω − ω1 − ω0) t] dω

− e2

2i�

∑
n

∞∫

0

Cn (ω, t) E0 · U1n (ω) exp [−i (ω − ω1 + ω0) t] dω

+ e2

2i�

∑
n

∞∫

0

C∗
n (ω, t) E0 · U∗

1n (ω) exp [i (ω − ω1 − ω0) t] dω

+ e2

2i�

∑
n
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0

C∗
n (ω, t) E0 · U∗

1n (ω) exp [i (ω − ω1 + ω0) t] dω (21)

Substituting Cn(ω, t) from (17) into expression (21), we obtain

Iph = e3

2�3

∑
n

∞∫

0

sin [(ω − ω1 − ω0) t]

(ω − ω1 − ω0)

(
E0 · U∗

1n

)
(E0 · U1n) dω

+ e3

4i�3 exp (−2iω0t)
∑
n
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0

1− exp [−i (ω−ω1−ω0) t]

(ω−ω1−ω0)

(
E0·U∗

1n

)
(E0·U1n) dω

− e3

4i�3 exp (2iω0t)
∑
n
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0

1− exp [i (ω−ω1−ω0) t]

(ω−ω1−ω0)
(E0 · U1n)

(
E0 · U∗

1n

)
dω

(22)
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The second and third terms on the right-hand side of expression (22) are rapidly
oscillating at a frequency of ω0, and they can be discarded by averaging over the
fast oscillations. Then, we obtain

Iph = e3

2�2

∞∫

0

sin [(ω − ω1 − ω0) t]

(ω − ω1 − ω0)

∑
n

(
E0 · U∗

1n

)
(E0 · U1n) dω (23)

Assuming that all of the orientations of the atom in space are equally probable
and therefore the vector U1n is statistically isotropic, one averages the current (23)
overall possible orientations of the atom.

Then,

(E0U1n)
(
E0U∗

1n

) = E0iE0jU1n,iU
∗
1n,j (24)

where the bar denotes averaging over all possible orientations and the indices i and
j are the vector indexes.

For the isotropic vector U1n,

U1n,iU
∗
1n,j = 1

3
|U1n|2δij (25)

Then,

(E0U1n)
(
E0U∗

1n

) = 1

3
|E0|2|U1n|2 (26)

Accordingly, for the mean photoelectric current (23), we obtain

Iph = β|E0|2 (27)

where the parameter

β = e3

6�2

∞∫

0

sin [(ω − ω1 − ω0) t]

(ω − ω1 − ω0)

∑
n

|U1n (ω)|2dω (28)

does not depend on the incident light intensity |E0|2 and instead, the parameter β

depends on the frequency ω0 of the incident light.
Thus, we have obtained the first law of the photoelectric effect without using

the photon hypothesis within the framework of only classical field theory while
considering the electromagnetic and electron waves as classical fields.

Let us consider the dependence of the parameter β on the frequency of the
incident light ω0.
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Let us denote

F (ω) =
∑
n

|U1n (ω)|2 (29)

x = ω − ω1 − ω0 (30)

Then, we obtain

β = e3

6�2

∞∫

|ω1|−ω0

sin(xt)

x
F (x − |ω1| + ω0) dx (31)

Here, we account for the fact that ω1 < 0.
The function sin(xt)

x
has a sharp peak in the vicinity of x = 0 and has a width of

�x∼π /t, and at t → ∞, it behaves similar to a delta-function:
∫ ∞

−∞
sin(xt)

x
dx = π .

The function F(ω) in the vicinity of x = 0 is smooth and varies weakly on the
interval �x∼π /t.

Therefore, with reasonable accuracy at ω0 < |ω1| − π
2t

, we can write

β ≈ e3

6�2 F(0)

∞∫

|ω1|−ω0

sin(xt)

x
dx (32)

At the same time, at ω0 − |ω1| 	 π
2t

, it is necessary to account for the fact that
a small neighbourhood of the point x = 0 will make the main contribution to the
integral in (31) (due to the delta-like behaviour of the integrand). As a result, for
ω0 − |ω1| 	 π

2t
, we obtain

β ≈ πe3

6�2
F (ω0 − |ω1|) (33)

In this case, the parameter β will vary with the frequency of the incident light ω0.
Figure 1 shows, in a nondimensional form, the dependence of the parameter β

on the frequency difference ω0 − |ω1| in the vicinity of the frequency ω0 = |ω1|.
We can see that the parameter β is virtually zero at ω0 < |ω1| − π

2t
, and it almost

linearly varies from zero to πe3

6�2 F(0) when ω0 changes in the range from |ω1| − π
2t

to |ω1| + π
2t

, and it virtually equals the value in (33) at ω0 > |ω1| + π
2t

. The width
of the frequency range in which there is a noticeable change in the parameter β is
�ω0∼π /t.

Assuming |ω1| ∼1014 rad/s (which corresponds to visible light) for the observa-
tion time t> 10−9 s, we obtain �ω0< 3·109 rad/s, which is significantly less than
|ω1|:
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Fig. 1 The dependence of the parameter β on the frequency difference ω0 − |ω1| in the vicinity
of the frequency ω0 = |ω1|

�ω0 
 |ω1| (34)

From this analysis, it follows that for the actual duration of the observation,
the parameter β will have almost a threshold dependence on the frequency of the
incident light ω0: for ω0 < |ω1|, we obtain β ≈ 0, and the photoelectric current is
almost absent, while at ω0 > |ω1|, the parameter β will take the value in (33), and
the photoelectric current (27) will be proportional to the intensity of the incident
light.

Thus, we have obtained the third law of the photoelectric effect also without
using the photon hypothesis, within only the framework of classical field theory.

Let us now consider the second law of the photoelectric effect. In its conventional
form, it establishes the dependence of the kinetic energy of the emitted photo-
electrons on the frequency and intensity of the incident radiation. However, in the
experiments on the photoelectric effect, the kinetic energy of the photoelectron is
not measured directly; it is determined indirectly through the measured stopping
potential. Therefore, such wording of the second law of the photoelectric effect
already contains some interpretation of the experimental facts; in particular, it
assumes that the electrons are indivisible particles that, at the time of escape
from the atom, have a definite kinetic energy. In this case, the kinetic energy of
the photoelectrons can be determined through the stopping potential at which the
photoelectric current is terminated.
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Because in the papers of this series we doubt that electrons are particles, it does
not make sense to talk about the kinetic energy of the electrons, and we will need a
different formulation of the second law of the photoelectric effect.

To rule out any interpretation of the experimental data, the wording of the
second law of the photoelectric effect (and in general, of any laws) should use
only measured parameters. From this perspective, an objective formulation of the
second law of the photoelectric effect will be as follows: the stopping potential varies
linearly with the frequency of the incident electromagnetic radiation and does not
depend on the flux.

Let us consider the function in (17). The square of its modulus |Cn(ω, t)|2
determines the density of the photoelectric current (18). This function reaches its
maximum when

ω1 − ω + ω0 = 0 (35)

and for large t, the largest part of the photoelectric current falls on the narrow range
of the frequencies of the electron wave that have the width

�ω ∼ π/t (36)

near the frequency

ω = ω0 − |ω1| (37)

When accounting for the smallness of the frequency range (36), it can be assumed
that the electron wave that is emitted by an atom is almost monochromatic and has
the frequency in (37), which linearly depends on the frequency of the incident light
ω0 and does not depend on its intensity.

Let us place on the path of the electron wave a decelerating potential. In this
case, we come to the problem of propagation of the electron wave in the field
of the decelerating potential, which is quite accurately described by the linear
Schrödinger equation. At large distances from the atom, the electron wave can
be considered to be approximately flat. To simplify the analysis, instead of the
decelerating potential, having a linear dependence on the coordinates along which
the electron wave propagates, let us consider the potential step (barrier) of the
same “height” U0 and the same width L to be the actual decelerating potential.
The solution of the Schrödinger equation for the potential step is well known [28]:
at �ω > U0, the electron wave passes through a potential step and is partially
reflected from it, while when �ω < U0, the electron wave is mainly reflected from
the potential step, although a small part goes through the potential step due to
tunnelling. The transmission coefficient of the electron wave for the potential step
(in our interpretation, this coefficient is the ratio of the electric current of the electron
wave behind the potential step to the electric current of the electron wave arriving
to the potential steps from an atom) in the limiting case �ω = U0 is defined by the
expression [28]
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D =
(

1 + 2meωL2

4�

)−1

(38)

Here, instead of the energy of a non-relativistic quantum particle, we use a
Schrödinger frequency ω (which is equal to the difference between the true
frequency of the electron wave that is entered into the solution of the Dirac equation
and its “rest frequency” ωe = mc2/� [23]). With the increase in the width of the
potential step L, the transmission coefficient (38) decreases rapidly, and for an actual
decelerating potential that has macroscopic sizes that substantially exceed the de

Broglie wavelength λdB = 2π

√
�

2meω
, it is almost equal to zero because, in this

case, we can neglect the tunnelling.
Thus, for the macroscopic decelerating potentials that are used in the exper-

iments, there is a threshold effect: when �ω > U0, the electron wave passes
through the decelerating potential, while when �ω ≤ U0, the electron wave is
fully “reflected” by the decelerating potential and the photoelectric current is not
observed behind it. This arrangement means that there is a limit to the value of the
decelerating potential, which is the stopping potential

Us = �ω (39)

above which the photoelectric current is absent.
When accounting for expression (37), we obtain

Us = �ω0 − � |ω1| (40)

This result completely coincides with the above given formulation of the second
law of the photoelectric effect, and it was obtained within the framework of classical
field theory without the use of such concepts as photons and electrons.

Note that expression (40) can be formally written in the form

�ω0 = E + A (41)

where the notations A = �|ω1| and E = Us were introduced. The expression in (41)
can be considered to be Einstein’s equation for the photoelectric effect, and one can
interpret it within the framework of the photon-electron representations in which
the parameter E is interpreted as the kinetic energy of the photoelectrons, while the
parameter A is interpreted as a work function of the atom. However, this approach
is no more than an interpretation that is based on the formal similarity of the pure
wave expression (40) and the mechanical law of energy conservation.

The above analysis has shown that such a corpuscular interpretation of the
photoelectric effect is superfluous.

The well-known experiments by Meyer and Gerlach on the photoelectric effect
on the particles of metal dust, irradiated with ultraviolet light, are considered to
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be one of the pieces of “irrefutable evidence” that light energy is propagated in
the form of identical indivisible quanta (photons). Assuming that the electrons are
particles while light is composed of continuous classical electromagnetic waves,
we can calculate the time during which the metal particle will absorb a sufficient
amount of energy for the ejection of an electron. In the experiments by E. Meyer
and W. Gerlach, this duration was of the order of a few seconds, which means that
the photoelectron cannot leave a speck of dust earlier than in a few seconds after
the start of irradiation. In contrast to this conclusion, the photoelectric current in
these experiments began immediately after the beginning of the irradiation. Hence,
it is usually concluded that this finding is only possible if the light is a flux of
photons each of which can be absorbed by the atom only entirely and, therefore,
can “knock out” the electron from the atoms at the moment of its collision with the
metal particle.

However, this conclusion follows only in the case in which the electrons are
considered to be indivisible particles. If instead of considering the electrons to be
particles we consider a continuous electron wave [23, 24], then as was shown above,
the photoelectric current appears almost without delay after the start of irradiation
of an atom by the classical electromagnetic wave and occurs even at very low light
intensities, when the light frequency exceeds the threshold frequency for the given
atom. This finding is because to start the photoelectric current, the atom does not
need to accumulate the energy that is equal to the ionization potential because
the electron wave is emitted by the atom continuously and not in the form of
discrete portions—“electrons”. Note that precisely the need to explain the ejection
of discrete electrons from an atom under the action of light led A. Einstein to the
idea of light quanta, which when absorbed, gave to the atom sufficient energy for
the liberation of a whole electron.

The above analysis shows that all three laws of the photoelectric effect only
approximately reflect its actual regularities. In particular, the photoelectric cur-
rent appears and disappears non-abruptly when “passing” through the threshold
frequency |ω1|, and it gradually increases or decreases in the frequency range
that has the width �ω0∼π /t near the threshold frequency |ω1|. However, this
effect can be detected only for ultrashort observation times of t∼ 10−15 s, which
is difficult to achieve in the experiments on the photoelectric effect. Moreover,
consideration of the nonlinear effects in the interaction of the light wave with an
atom shows [29] that the photoelectric current appears even in the case when the
frequency of the incident light is significantly less than the threshold frequency
|ω1|, which is predicted by the linear theory. Such effects can be observed only
in a very intense laser field [30]. Strictly speaking, the theory [29], which describes
the ionization of an atom in an intense laser field, is fully classical in the sense under
consideration because an atom is described by the Schrödinger equation, while the
light wave is considered to be a classical electromagnetic field. The true result of
this finding is the photoelectric current that is created by the continuous electron
wave emitted by an atom because precisely the photoelectric current is calculated in
the theory [29]. However, traditionally, the results of the theory [29] are interpreted
from the standpoint of photon-electron representations, which make it necessary
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to interpret the main result of the theory [29] as the probability of the ionization
of an atom (i.e. the probability of the liberation of an “electron” from the atom)
per unit time. The representations with respect to the multiphoton ionization of an
atom, when the atom “absorbs simultaneously several photons”, the total energy of
which exceeds the ionization potential of the atom, were a consequence of such
an interpretation. When there is a requirement for too many “photons” for the
liberation of the “electron”, talking about the simultaneous absorption of such a
large number of particles becomes meaningless (because of the low probability
of this process); then, the results of the theory [29] are interpreted as a tunnel
ionization in which the intense laser field changes the potential field in which the
“electron” is positioned, which gives it the “opportunity” to leave the atom due to
tunnelling. From the point of view of the ideas that are developed in this series of
papers, both “multiphoton” and “tunnel” ionization of an atom are the result of the
same process—the interaction of a classical electromagnetic wave with a classical
electron wave.

Finally, note that there is no difficulty in calculating the angular distribution of
the photoelectric current in the framework of the theory under consideration, if
we account for the fact that the continuous electric current created by the electron
wave emitted by an atom under the action of light is calculated by expression (18)
using the wave function in (3) and (17). Once again, note that this current is not
the distribution over the directions of the particles-electrons that are emitted by an
atom but the distribution over the directions of the current of a continuous charged
electron wave that is emitted by the atom. All of the known expressions that are
obtained earlier for the photoelectric effect (see, e.g. [4, 31]) remain valid, but they
should now be interpreted from the standpoint of classical field theory.

3 Concluding Remarks

Thus, we see that the light-atom interaction including the photoelectric effect is
fully described within the framework of classical field theory without the use of
quantum electrodynamics and, in general, without any quantization. The results of
this theory utilize the simple classical sense and do not require the postulation of
such paradoxical properties of matter as the wave-particle duality. The paradoxes in
the theory appear when a continuous light beam or a continuous charged electron
wave emitted by the atoms under the influence of incident light is attempted to
be interpreted as the flux of indivisible particles—photons or electrons. In this
case, the probabilistic interpretation of the results of the theory arises from a need.
However, as was shown in this paper and in the previous papers of this series [23–
26], the processes that are under consideration are fully deterministic, while the
postulate about the probabilistic nature of all quantum phenomena is the result of
misinterpretation.



Classical Field Theory of the Photoelectric Effect 213

Acknowledgments Funding was provided by Tomsk State University competitiveness improve-
ment programme.

References

1. Lamb, W.E., Scully, M.O.: The photoelectric effect without photons. In: Polarization, Matter
and Radiation. Jubilee Volume in Honour of Alfred Kasiler, pp. 363–369. Press of University
de France, Paris (1969)

2. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)
3. Bethe, H.: Ann. Phys. 4, 433 (1930)
4. Sommerfeld, A.: Wave-Mechanics: Supplementary Volume to Atomic Structure and Spectral

Lines. Dutton, New York (1934)
5. Barut, A.O., Van Huele, J.F.: Quantum electrodynamics based on self-energy: lamb shift and

spontaneous emission without field quantization. Phys. Rev. A. 32(6), 3187–3195 (1985)
6. Barut, A.O., Dowling, J.P.: Self-field quantum electrodynamics: the two-level atom. Phys. Rev.

A. 41(5), 2284–2294 (1990)
7. Nesbet, R.K.: Spontaneous emission in semiclassical radiation theory. Phys. Rev. A. 4(1),

259–264 (1971)
8. Stroud Jr., C.R., Jaynes, E.T.: Long-term solutions in semiclassical radiation theory. Phys. Rev.

A. 1(1), 106–121 (1970)
9. Crisp, M.D., Jaynes, E.T.: Radiative effects in semiclassical theory. Phys. Rev. 179(5),

1253–1261 (1969)
10. Dirac, P.A.M.: Relativity quantum mechanics with an application to compton scattering. In:

Proceedings of the Royal Society of London. Series A, vol. 111, pp. 405–423. Royal Society
(1926)

11. Dirac, P.A.M.: The compton effect in wave mechanics. In: Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 23, pp. 500–507. Cambridge University Press (1926)

12. Gordon, W.: Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 40, 117–133
(1926)

13. Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen
relativistischen Quantendynamik von Dirac. Z. Phys. 52(11-12), 853–869 (1929)

14. Klein, O., Nishina, Y.: The Oskar Klein Memorial Lectures: 1988–1999, vol. 1, p. 253. World
Scientific, Singapore (2014)

15. Schrödinger, E.: Uber den Comptoneffekt. Ann. Phys. 387(2), 257–264 (1927)
16. Purcell, E.M.: The question of correlation between photons in coherent light rays. Nature

(London). 178, 1449–1450 (1956)
17. Mandel, L.: V fluctuations of light beams. Prog. Opt. 2, 181–248 (1963)
18. Haken, H., Sauermann, H.: Nonlinear interaction of laser modes. Z. Phys. 173(3), 261–275

(1963)
19. Lamb Jr., W.E.: Theory of an optical maser. Phys. Rev. 134(6A), A1429 (1964)
20. Rashkovskiy, S.A.: Are there photons in fact? In: The Nature of Light: What are Photons? VI,

vol. 9570, p. 95700G. Proceedings of SPIE, Bellingham (2015)
21. Rashkovskiy, S.A.: Quantum mechanics without quanta: the nature of the wave-particle duality

of light. Quantum Stud. Math. Found. 3(2), 147–160 (2016)
22. Rashkovskiy, S.A.: Semiclassical simulation of the double-slit experiments with single pho-

tons. Prog. Theor. Exp. Phys. 2015(12), 123A03 (16 pages) (2015)
23. Rashkovskiy, S.A.: Quantum mechanics without quanta: 2. The nature of the electron.

Quantum Stud. Math. Found. 4(1), 29–58 (2017)
24. Rashkovskiy, S.A.: Classical-field model of the hydrogen atom. Indian J. Phys. 91(6), 607–621

(2017). https://doi.org/10.1007/s12648-017-0972-8

http://dx.doi.org/10.1007/s12648-017-0972-8


214 S. A. Rashkovskiy

25. Rashkovskiy, S.A.: Nonlinear Schrödinger equation and semiclassical description of the
light-atom interaction. Prog. Theor. Exp. Phys. 2017(1), 013A03 (17 pages) (2017)

26. Rashkovskiy, S.A.: Nonlinear Schrödinger equation and classical-field description of thermal
radiation. Indian J. Phys. 92(3), 289–302 (2018). https://doi.org/10.1007/s12648-017-1112-1

27. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, vol. 2, 4th edn. Butterworth-
Heinemann, Burlington (1975)

28. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, vol. 3, 3rd edn.
Pergamon Press, Oxford (1977)

29. Keldysh, L.V.: Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP. 20,
1307 (1965)

30. Walsh, T.D., Ilkov, F.A., Decker, J.E., Chin, S.L.: The tunnel ionization of atoms, diatomic and
triatomic molecules using intense 10.6 mu m radiation. J. Phys. B Atomic Mol. Phys. 27(16),
3767 (1994)

31. Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, vol. 4, 2nd edn.
Butterworth-Heinemann, Oxford (1982)

http://dx.doi.org/https://doi.org/10.1007/s12648-017-1112-1

	Classical Field Theory of the Photoelectric Effect
	1 Introduction
	2 Photoelectric Effect
	3 Concluding Remarks
	References


