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Abstract: The photoelectric effect in a Ge-on-Si single-photon avalanche detector (SPAD) at an
ultralow energy in incident pulsed laser radiation is considered in the frame of the classical theory
of the electrodynamics of continuous media. It is shown that the energy of incident laser radiation
which is shared among a huge number of electrons in a Ge matrix can concentrate on only one of these
through the effect of the constructive interference of the fields re-emitted by surrounding electrons.
Conservation of energy in this case is upheld because of a substantial narrowing of the effective
bandgap in heavily doped p-Ge, which is used in the design of the SPAD considered.

Keywords: photoelectric effect; sub-photon energy; classical electrodynamics; laser radiation; inter-
ference; heavily doped semiconductors

1. Introduction

Metrology of extremely low radiation energies/powers is the subject of vital impor-
tance for R&D in the area of quantum technologies, which include quantum commu-
nications [1] using quantum key distribution [2,3], secret sharing [4], cryptography [5]
protocols, quantum computing [6] and quantum information processing [7]. It also secures
progress in more classical technologies [8] such as deep space communications [9], telecom-
munications [10], sensing [11], rangefinding, light detection and ranging (LiDAR) [12] and
depth imaging of objects [13], including imaging through various densities of different
obscurants [14] and even covert imaging [15] applications. Single-photon detectors (SPD)
are the devices that do the job. Significant advances in both photoelectric and thermal
SPDs have been achieved in recent years [16–22]. As was conventionally happening in the
history of science and technologies, the more objects of study and more research involved,
the higher probability to find something new and unexpected. In the case of SPDs, such
news is that their detection efficiency (DE) can be nonzero when the energy in a pulse
of incident laser radiation Wi is less or even much less than the energy of the photon h̄ω
corresponding to the frequency ω of this radiation [19–22]. Such observations are in clear
contradiction with Einstein’s quantum model of the photoelectric effect (PE) [23], which
states that a photoelectron appears when the electron absorbs from light the energy of
a quantum h̄ω, i.e., of a photon, which exceeds the work function P or bandgap Eg of a
material. This, in essence, a conservation of the energy condition in PE, presumes that
the energy of a light pulse Wi, which is transferred to an electron in a medium, has to
be not less than P or Eg and h̄ω. While for the superconductor SPDs [7], in which the
energy gap Eg ≡ 2∆ << h̄ω, the appearance of a photoelectron when Wi << h̄ω does not
contradict the conservation of energy law, in the case of photoelectric SPDs [19–21], in
which it is presumed that Eg ≤ h̄ω, such observations look surprising. In this work, a
plausible explanation for such observations in Ge-on-Si single-photon avalanche diode
(SPAD) detectors is given in the frame of the classical electrodynamics of continuous media.
Active R&D interest in such detectors is high [15,20,21,24] because they are sensitive in
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the near infrared, up to wavelengths of 1600 nm, they operate near room temperature and
they are Si CMOS-compatible devices. As a consequence, the amount of data on their
characteristics available for their theoretical analysis is high.

2. Device Design and Characteristics

The structure of the SPAD used in [20,21] is presented in Figure 1. The authors
presume that an incident light, which enters the detector through a high-concentration
boron-doped (∼5× 1019 cm−3) p++Ge (p-Ge) layer of thickness l = 0.1 µm, is absorbed with
the creation of electron–hole pairs in a 1 µm-thick layer of intrinsic Ge (i-Ge). The created
PEs are then dragged by an applied voltage of ~40 V toward the intrinsic Si (i-Si) layer of
1 µm thickness. In this layer, these PEs initiate an electron avalanche, which multiplies the
number of electrons at the output of this layer to a readily detectable level. The p-doped Si
of 0.1 µm thickness forms the charge sheet. It ensures that the electric field in i-Ge layer is
well below an avalanche breakdown field, while the field in the Si multiplication layer is
3 times greater than the breakdown field to provide impact ionization. The structure was
grown on a highly doped n++Si substrate. The material in i-Ge and i-Si layers is “pure”,
i.e., not intentionally doped, that is, with a concentration of uncontrolled admixtures of
~1015 cm−3. The device with a 25 µm entrance aperture diameter operated at temperatures
of T = 100–150 K. That SPAD was irradiated by a 10 kHz sequence of 50 ps pulses of laser
radiation at wavelengths of λ = 2πc/ω = 1.31 or 1.55 µm. The radiation from a laser was
sent to the entrance of the detector through a single mode fiber (core diameter of~10 µm), a
calibrated optical attenuator and a two-lens imaging system. This system allowed reducing
the energy in each incident pulse Wi up to ~0.01h̄ω ∼= 10−21 J. The illuminated volume of
Ge layers was estimated as V ≈ 1.1 µm × (10 µm)2 ≈ 10−10 cm3. With such a SPAD, DE
at Wi ≤ 0.1h̄ω was measured to be nonzero at both λ (~4% at λ = 1.31 µm and T = 100
K, and ~0.15% at λ = 1.55 µm and T = 150 K) [20]. The measured dependence of DE on
Wi at λ = 1.31 µm and T = 125 K, by the authors [21], is presented in Figure 2. As can be
seen, DE(Wi) saturates at ~100% when >10h̄ω and linearly decreases to ~0.1% at ~0.01h̄ω
with ~13% at ~h̄ω (see Figure 2). In doing so, DE(Wi) does not manifest any peculiarities
at Wi

∼= 1h̄ω, which may be expected according to Einstein’s model [23]. To elucidate the
nature of such observations, we first looked more carefully to [23].
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and layer thicknesses. 

Figure 1. Ge-on-Si single-photon avalanche diode (SPAD) structure cross-section illustrating two Ge
layers, two Si layers, Si substrate, Ni/Al contacts, doping number densities in cm−3 (in brackets) and
layer thicknesses.
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3. Discussion

Analysis of the data presented above has led us to the following questions:

• To what extent is Einstein’s model of PE relevant to the processes in such SPADs and
observed results?

• If not Einstein’s model, then how can the observed results and their interpretation be
made compatible?

3.1. Einstein’s Model and Its Prerequisites

According to Einstein [23], an electron, which is bound in a medium, becomes a
photoelectron when its kinetic energy, acquired from incident radiation, is higher than
the energy binding it to the medium. The incident radiation of frequencyω is considered
as a flow of quanta with energy h̄ω. The important prerequisites of his model may be
re-formulated as (1) the quanta penetrate to the surface layer of a material, where their
energy is converted to the kinetic energy of electrons, and (2) one light quantum gives up
all its energy to one electron.

Regarding these prerequisites in relation to detection of a single photon in SPADs,
the first one requires that in the region of where a photoelectron is generated, incident
radiation, i.e., the energy of a photon, is not attenuated due to its conversion to any other
forms of energy, e.g., to heat, radiation of other frequencies. The objective data on the
light absorption coefficient (α) in Ge show that this requirement is not met: at λ ≈ 1.3–
1.55 µm α = (5 ± 1) × 103 cm−1 in i-Ge [25] and ~(1-2) × 103 cm−1 in heavily doped p-Ge
(concentration Np ≥ 5 × 1019 cm−3) [26]. It follows from these data that, while the p-Ge
layer is practically transparent (αl ≤ 0.02), the i-Ge layer is half transparent (αl ∼= 0.5). This
means, in particular, that if a photoelectron appears in the i-Ge layer, it, most probably,
happens in a thin entrance surface part (l < 0.1 µm) of the whole i-Ge layer. This may also
happen in the p-Ge layer.

To choose between the two, we must take into account the following circumstances.
It is known that conventional i-Ge is a nondegenerate semiconductor with a residual
concentration of uncontrolled admixtures and defects of ~1015 cm−3. In such material,
the energy gap, Eg, between the valence and conduction bands at T ≈ 100–150 K is of
~0.7 eV, and the Fermi energy level is located in roughly the middle of the forbidden zone,
F ∼= Eg/2. Accordingly, the temperature-induced concentration of free electrons Ne(T) in
the conduction band of an i-Ge, which is expected to be of <104 cm−3 (at T < 150 K) [27], is
negligible compared to Ne ∼= 1015 cm−3 due to uncontrolled admixtures and defects [28].
It then follows that in the volume of i-Ge layer in [20,21], V ≈ 1 µm × (10 µm)2 ≈ 10−11

cm3, the number of free electrons will be of ~105. Obviously, it is problematic to detect the
appearance of a single PE on such a background.

The situation is different in a heavily doped p-Ge (Np ∼= (0.5–1) × 1020 cm−3) [27].
The Fermi level in such a case is shifted to the valence band and all free electrons are
captured by acceptors. As a result, Ne tends to zero. In this case, the appearance of a single
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additional free electron is obviously an event. If this is the case, the SPAD we consider
operates like a conventional photomultiplier tube (PMT), in which the p-Ge layer plays the
role of a photocathode, and the i-Ge layer is equivalent to the vacuum spacing between the
photocathode and the multiplying electrons system of dynodes. Such a role of p-Ge and
i-Ge layers in SPADs was never discussed before.

It follows from above that the p-Ge layer is transparent for incident light (αl < 0.02)
and has a low concentration of free electrons. A material in which such conditions are
upheld behaves as an optically transparent dielectric.

3.2. The Electromagnetic Energy in a Dielectric

According to [29], the density of electromagnetic (EM) energy, Ud, in a dielectric
medium (µ = 1) is

Ud =
1

8π

(
εE2

d + H2
d

)
≡ 1

8π

(
E2

d + H2
d + 4πχE2

d

)
(1)

where Ed and Hd are the amplitudes of electric and magnetic fields, ε = 1 + 4πχ is the
permittivity and χ is the susceptibility. The last term in (1) is the part of the EM energy
density which is transferred to the movement of the bound electrons (BEs) in a dielectric. It
is important to note here that in absence of other losses, this energy returns to the radiation
field when it leaves a medium. Dividing this energy by the density of the BEs number,
Ne, which are involved in the interaction, one can get the amount of EM energy, which
is transferred to one BE, W1. To estimate W1 in the case under consideration, we must
take into account that the permittivity of Ge is ε ∼= n2 ∼= 17. This, in particular, means that,
to sufficient, accuracy we can suppose that Ud

∼= Uin = Iin/c, where Iin is the intensity of
incident laser radiation in vacuum (n = 1), i.e., before it enters the SPAD, in each pulse
and c is the velocity of light in vacuum. To estimate Iin and Ud, respectively, we take, for
definiteness, the energy in each pulse of 0.1h̄ω ∼= 1.5 × 10−20 J and the diameter of the
irradiated spot at the entrance of the device of 10 µm. Then, for a 50 ps duration of pulses,
we get Iin

∼= 0.4 mW/cm2 and Ud
∼= 105 eV/cm3. Therefore, taking into account that the

total density of BEs in Ge, defined as Ne, = Na x32 is ≈ 1.3 × 1024 cm−3, where Na is the
number of Ge atoms per cm3, which is ~4 × 1022 cm−3, and “32” is the number of electrons
in a Ge atom, we get W1 ∼= 10−19 eV. This energy is obviously much, much less than the
conventional direct bandgap energy in Ge, e.g., Eg(125K) ∼= 0.7 eV. This is actually true even
for radiation pulses with energy of 1sh̄ω, 10sh̄ω, 1000sh̄ω, etc.

Then, the following questions need answers: (1) How can only one of all electrons in
the irradiated p-Ge layer get the whole energy from an incident radiation pulse? (2) Why
does that electron overcome the bandgap energy barrier presumed to be Eg(125K) ∼= 0.7 eV
when the energy it can get from a pulse is much less than Eg?

3.3. The Effect of Interference

To answer the first question, we must account for the fact that an electron driven
by an oscillating electric field is the source of a secondary emission. Interference is the
only physical phenomenon which is capable of redistributing the averaged energy in a
system of many radiation emitters. If we then take into consideration that the incident
radiation, which is generated by a laser, is highly coherent throughout the volume of Ge
layers, V ≈ 10−10 cm3, the driven oscillations of electrons in this volume and the fields
reradiated by each of them will be coherent. As such, re-radiated fields can constructively
interfere at some time during irradiation and at some point inside this volume (see, e.g.,
point C in Figure 3). Taking into account that the total density number of electrons in Ge
is Ne ≈ 1.3 × 1024 cm−3, then the number of electrons, involved in such an interaction, is
N ∼= Ne × V ≈ 1.4 × 1014, and potentially the factor of radiation intensity, and EM energy
density, enhancement may be potentially up to N2 ≈ 2 × 1028. It is much less in reality.
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To estimate a potential factor of enhancement, we must take into consideration several
circumstances. Firstly, the nature of secondary emission by electrons is twofold: it may be
a result of accelerated movement of an electron [30] and of an oscillating dipole which is
formed by an electron and a positively charged atomic rest [29].

In the first case, all ~1.3 × 1024 cm−3 electrons of a material are sources of re-emission
because the electric field Ei of the incident radiation moves an electron regardless of where
it is located. The strength (amplitude) of an electric field, Ee, that is re-emitted by being
driven with the acceleration

.
v electron decreases with distance R from that electron as [30]

Ee =
e

.
v

c2R
sin θ (2)

where θ is the angle between the direction of the Hertzian vector and the direction of the
observation. Correspondent movement is governed by the equation

.
v =

e
m

Eie−iω0t (3)

where
.
v is the velocity of an electron, e and m are its charge and mass and Ei is the amplitude

of the electric field of the incident radiation of frequency ω0. Accordingly, we have for the
re-emitted field amplitude at the distance R from a point charge emitter

Ee =
e2Ei

mc2R
sin θ (4)

In the second case, an atom is considered as a set of dipole oscillators. These re-emit
an EM wave to the electric field, the amplitude of which is decaying with R as [29]

Ed = er(t)

(
1

R3 + i
ω0

sR2 −
ω2

0
c2R

)
sin θ ∼= −er(t)

ω2
0

c2R
sin θ (5)

where r(t) is the displacement of an electron from its equilibrium position at an orbit in an
atom, which is driven by the electric field of the incident radiation Ei. This displacement
may be described by the oscillator equation [31]

..
r + γi

.
r + ω2

gr =
e
m

Eie−iω0t (6)

where γi is the coefficient, which characterizes a loss of oscillation energy due to inelastic
collisions of an electron with surrounding particles and the material lattice, and ωg is the
resonant frequency of an oscillator, the magnitude of which is determined by a bounding
force between an electron and its atomic rest. When the radiation is monochromatic, a
solution to Equation (6) is

ra =
eEi

m(ω2
g −ω2

0 − iγiω0)
(7)

It follows from Equation (7) that, since γi << ωg, ra maximizes when ω0 = ωg and
decreases proportionally to 1/ωg

2 when ωg >> ω0. It then follows from Equation (7) that
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the dipole-kind re-emission by the electrons, which occupy the deeper orbits, may be
considered negligible since these have much higher energies than those bound with an
atomic rest, i.e., much higher ωg. Consequently, in a Ge atom, the number of BEs, which
are active in the dipole-kind interaction with NIR optical radiation, is limited to 4, giving
the density of correspondent Bes, Nd = 4Na ≈ 1.6 × 1023 cm−3.

Let us evaluate the effect of the coherent summation at some point, C, in the p-Ge
layer of the fields re-emitted by all involved electrons and dipoles in the SPAD. Consider
in a medium a half-sphere of radius R with the thickness of wall δR. Its volume is

δV =
2
3

π
[
(R + δR)3 − R3

]
∼= 2πR2δR (8)

The number of emitters in this volume is

δNe,d = Ne,dδV ∼= 2πNe,dR2dR (9)

All these emitters are equidistant from some point, C, in the p-Ge layer (see Figure 4).
An effective distance Rm in the body of the SPAD, from which a re-emitted radiation may
have an essential magnitude at C, is of α−1. We then must account for the notion that the
electric field of the incident radiation Ei drives the emitters in the plane parallel to the p-Ge
layer. These emitters give rise to a re-emission of radiation with the electric field amplitude
Ee dependent on θ (see Equations (4) and (5)). To account for this effect, we choose on
the semi-sphere layer of a radius R a sub-volume δv = δsδR = R2δθδϕδR, where δs is the
cross-sectional area of the sub-volume. All emitters in such a volume will produce at C the
fields of practically the same amplitude.
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All these emitters are equidistant from some point, C, in the p-Ge layer (see Figure 4). 
An effective distance Rm in the body of the SPAD, from which a re-emitted radiation may 
have an essential magnitude at C, is of -1. We then must account for the notion that the 
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duce at C the fields of practically the same amplitude.  
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which contributes to an enhanced field at the point C in the p-Ge layer. Vertical arrows represent 
the propagation direction of the incident radiation, horizontal dashes represent electrons driven 
by the incident radiation, Rm is the effective absorption length of radiation and θ is the angle be-
tween the direction of electron oscillations and the direction from this electron to point C. 
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where a0 ≅ 2.8.10−8 cm is the Ge/Si lattice constant. The magnitude of |Fe(Rm)|2 determines 
a magnitude of W1 enhancement at point C when re-emission of all electrons in the irra-
diated volume is coherently summed. Substituting into Equation (10) the magnitudes of 
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Figure 4. Schematic sketch of the Ge (p- and n-) and Si layers in a SPAD, the re-emission from
which contributes to an enhanced field at the point C in the p-Ge layer. Vertical arrows represent the
propagation direction of the incident radiation, horizontal dashes represent electrons driven by the
incident radiation, Rm is the effective absorption length of radiation and θ is the angle between the
direction of electron oscillations and the direction from this electron to point C.

Multiplying δv by Ne and Ee from Equation (4) and integrating over R, θ and ϕ, we
get the field, which may be induced at point C by the coherent summation of the fields
re-emitted by all electrons in Ge and Si layers in the SPAD:

EeΣ = Ei
πNee2

mc2

(
R2

m − a2
0

)
= EiFe(Rm) (10)

where a0 ∼= 2.8 × 10−8 cm is the Ge/Si lattice constant. The magnitude of |Fe(Rm)|2 deter-
mines a magnitude of W1 enhancement at point C when re-emission of all electrons in the
irradiated volume is coherently summed. Substituting into Equation (10) the magnitudes
of the corresponding parameters of Ge and Si (Ne ≈ 1024 cm−3, nGe ∼= 4,1, nSi

∼= 3.5 and
Rm ∼= α−1 ∼= 2 µm), one would get |Fe|2 ∼= 2 × 109, which is clearly much less than the
desirable ~1019.
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Similarly, using Equations (5) and (7), presuming ω0 = ωg and taking into account
that Rm >> a0, we get the enhancement factor in the case of re-emission by dipoles:

|Fd|2 ∼=
[

πNde2ωg

mc2γi
R2

m

]2

(11)

Among the parameters, magnitudes of which determine |Fd|2, the most uncertain
one is γi. According to [30] its magnitude in semiconductors may vary in the range from
~1010 s−1 at a room temperature to ~107 s−1 at lower T. Substituting to Equation (11)
magnitudes of e, m, n, c and ωg = Eg/h̄ = 1015 s−1, we get

|Fd|2 ≈
(

6× 1018

γi

)2

(12)

It follows from Equation (12) that at γi ≤ 2× 109 s−1, which is a reasonable magnitude
for Ge at T = 100–150 K, W1|Fd|2 ≥ 0.7 eV, even at W1 = 0.01h̄ω0 ∼= 10−21 J, i.e., this is just
the energy sufficient for an electron to overcome the energy barrier of the forbidden zone
in Ge. An important condition for the realization of such enhancement, which is ω0 = ωg,
is the well-known Einstein condition h̄ω0 = Eg = h̄ωg.

The only problem, however, is that the conservation of energy in the case under
consideration remains an enigma when Wi < Eg. A specific feature of heavily doped
semiconductors, which is p-Ge used in SPADs [20], gives a clue for resolving this issue.

3.4. The Bandgap in a Heavily Doped p-Ge

In such materials, the typical for intrinsic semiconductors’ sharp zone boundaries
(dashed straight lines in Figure 5a) is blurred and the “tails” of the allowed occupation
states penetrate the forbidden zone, resulting in a substantially narrower effective bandgap
Ege. [27]. The physical reason for this effect is the local fluctuations of the internal electric
field in a material due to a generic inhomogeneity of the spatial distribution of a dopant at
its high concentration [32]. The local shift of zone boundaries, which is induced by such
fluctuations, is illustrated in Figure 5a by the two solid lines and the dashed curved lines.
A deformation of zone boundaries, which is schematically depicted by two parallel solid
lines, is typical for the case when the effective masses of charge carriers at zone boundaries
coincide [27]. The local bandgap in this case does not change. As shown in [32], such a
case takes place in p-Ge for indirect interband transitions. The radiation with λ = 1.31 µm
(h̄ω0 ∼= 0.85 eV) falls in the range of direct transitions in Ge (Egd

∼= 0.85 eV). Since an effective
mass of electrons at the center of the Brillouin zone is much less than that of holes, the
amplitude of the conduction zone boundary deformation is essentially reduced [32] (the
dashed curve). The shaded areas represent the “tails”, which are a result of averaging the
field fluctuations. Figure 5b illustrates, schematically, the averaged densities of the allowed
occupation states Nc,v(E) for electrons (c) and holes (v) for intrinsic (dash-dotted lines) and
for highly doped (solid lines) material, and the intrinsic Egi and effective bandgap Ege.

In particular, in Ge at Nd ≥ 1020 cм−3, the factor of the effective gap narrowing may
be up to ~100 [27]. These circumstances allow us to account for why the appearance of a
photoelectron resulting from the irradiation of a light pulse with sub-photon energy in the
SPAD under consideration does not contradict the conservation of the energy principle in
this interaction.
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Figure 5. (a) Spatial variation in the conduction and valence band boundaries, Ec,v, in a pure
semiconductor (dashed straight lines) and in a heavily doped semiconductor (solid lines). (b) Effective
densities of the allowed occupation states Nc,v(E) for electrons (c) and holes (v) for intrinsic (dash-
dotted lines) and for highly doped (solid lines) material.

4. Conclusions

Classical macroscopic electrodynamics allows us to account for the photoelectric effect
in a Ge-on-Si SPAD when the incident pulsed laser radiation is of sub-photon energy. The
energy of the incident laser radiation, when transferred to a huge number of electrons
in the Ge matrix, can concentrate on only one of these through the effect of constructive
interference of the fields re-emitted by surrounding electrons. The conventional necessary
condition for the photoelectric effect in a material, which reads as ω0 = Eg/h̄ [23], comes to
the model as a resonant condition for the Lorentz classical oscillator model. The conserva-
tion of the energy law in this interaction is upheld because of a substantial narrowing of the
effective bandgap in the heavily doped p-Ge layer of the SPAD. Since the classical model
presented in this work is linear with respect to the energy in an incident pulse Wi, the fact
that the experimental data shown in Figure 2 demonstrate a smooth linear decrease in the
detection efficiency with a decrease in Wi when Wi < 10 h̄ω and manifest no peculiarities
at Wi ∼= 1 h̄ω is in good agreement with the developed model.
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